ATTESTATION OF CONFORMITY

Issued to: NINGBO AUSTA SOLAR TECH CO., LTD.

No.136 1-1, Haichuan Rd, Jiangbei District, Ningbo, China

For the product: Hybrid inverter

Trade name:

Type/Model: AU-1P1K3G-LE-1, AU-1P1.5K3G-LE-1, AU-1P2K3G-LE-1, AU-1P2.5K3G-LE-1, AU-1P2K3G-LE-1, AU-1P2K3G-LE-1

1P3K3G-LE-1, AU-1P3.6K3G-LE-1, AU-1P3K3G-LE, AU-1P3.6K3G-LE

Ratings: See Annex

Manufactured by: NINGBO AUSTA SOLAR TECH CO., LTD.

No.136 1-1, Haichuan Rd, Jiangbei District, Ningbo, China

Requirements: Engineering Recommendation G98 Issue 1/ Amendment 7/2022

(G98/1-7:2022)

This Attestation is granted on account of an examination by DEKRA, the results of which are laid down in a confidential file no. 6169274.50

The examination has been carried out on one single specimen or several specimens of the product, submitted by the manufacturer. The Attestation does not include an assessment of the manufacturer's production. Conformity of his production with the specimen tested by DEKRA is not the responsibility of DEKRA.

Arnhem, 19 September 2023 /// Number: 6169274.01AOC

DEKRA Testing and Certification (Shanghai) Ltd.

Kreny Lin

Certification Manager

© Integral publication of this attestation and adjoining reports is allowed

Kreny lin

Page 1 of 17

Ratings of the test product:

	Sı	pecification	s table				
	AU-	AU-	AU-	AU-	AU-	AU-	
Model	1P1K3G-	1P1.5K3	1P2K3G-	1P2.5K3	1P3K3G-	1P3.6K3	
	LE-1	G-LE-1	LE-1	G-LE-1	LE-1	G-LE-1	
Input							
PV Max (W)	1500	2300	3000	3800	4500	5400	
Vmax PV (V)	550	550	550	550	550	550	
Isc PV (absolute Max.) (A)	26	26	26	26	26	26	
Number of MPP trackers	1	1	1	1	1	1	
Number of input strings	1	1	1	1	1	1	
Max. PV input range (A)	18.5	18.5	18.5	18.5	18.5	18.5	
MPPT Voltage Range (V)	80-500	80-500	80-500	80-500	80-500	80-500	
Vdc range @ full power (V)	80-500	90-500	120-500	150-500	170-500	210-500	
Battery (charge/discharge)							
Battery type			Li-ion/Lea	d-acid etc.			
Battery Nominal Voltage (V)			51	.2			
Battery Voltage Range (V)	40-60						
Max charge/discharge	25	40	F0	00	00	00	
Current(A)	25	40	50	63	80	80	
Max charge/discharge	1000	1500	2000	2500	2000	2600	
Power(W)	1000	1500	2000	2500	3000	3600	
AC Grid (input and output)							
Normal AC Voltage (VAC)			L/N/PE, 220	Vac, 230Vac	;		
Frequency (Hz)			50 /	[/] 60			
Max. cont. Current (A)	5	7	10	12	14	17	
Nominal Power (VA)	1000	1500	2000	2500	3000	3600	
Max. Power (W)	1000	1500	2000	2500	3000	3600	
Max. apparent Power (VA)	1000	1500	2000	2500	3000	3600	
Power factor(adjustable)			1.0(-0.8	3~ +0.8)	•		
AC Load output							
Normal Voltage (VAC)			L/N/PE, 220	Vac, 230Vac	;		
Frequency (Hz)			50 /	[/] 60			
Max. cont. Current (A)	5	7	10	12	14	17	
Nominal Output Power (W)	1000	1500	2000	2500	3000	3600	
Max. output Power (W)	1000	1500	2000	2500	3000	3600	
Max. apparent Power (VA)	1000	1500	2000	2500	3000	3600	
Power factor			1.	.0			
Others							
Ingress protection (IP)			IP	65			
Protective class			Cla	ss I			
Temperature (°C)		-25	°C to +60°C	(Derating 45	°C)		
Inverter Isolation		N	lon-isolated	(PV-AC-BAT)		
Overvoltage category		OV	C III (AC Ma	in), OVC II (I	PV)		

		Specification	s table						
	AU-	AU-	AU-	AU-	AU-	AU-			
Model	1P1K3G-	1P1.5K3	1P2K3G-	1P2.5K3	1P3K3G-	1P3.6K3			
	LE-1	G-LE-1	LE-1	G-LE-1	LE-1	G-LE-1			
		Specification	s table		I .				
Model		AU-1P3l	K3G-LE	А	U-1P3.6K3G	G-LE			
Input									
PV Max (W)		450	00		5400				
Vmax PV (V)		55	0		550				
Isc PV (absolute Max.) (A)		26 :	(2		26 x 2				
Number of MPP trackers		2			2				
Number of input strings		1/	1		1/1				
Max. PV input range (A)		18.5	x 2		18.5 x 2				
MPPT Voltage Range (V)		80-5	500		80-500				
Vdc range @ full power (V)		90-5	500		110-500				
Battery (charge/discharge)									
Battery type			Li-ion	/Lead-acid e	etc.				
Battery Nominal Voltage (V)				51.2					
Battery Voltage Range (V)		40-60							
Max charge/discharge Current(A	A)	80)		80				
Max charge/discharge Power(W))	300	00		3600				
AC Grid (input and output)									
Normal AC Voltage (VAC)			L/N/PE,	220Vac, 230	0Vac				
Frequency (Hz)		50 / 60							
Max. cont. Current (A)		14			17				
Nominal Power (VA)		300		3600					
Max. Power (W)		300	00		3600				
Max. apparent Power (VA)		3000 3600							
Power factor(adjustable)		1.0(-0.8~ +0.8)							
AC Load output									
Normal Voltage (VAC)			L/N/PE,	220Vac, 230	0Vac				
Frequency (Hz)				50 / 60					
Max. cont. Current (A)		14			17				
Nominal Output Power (W)		300			3600				
Max. output Power (W)		300			3600				
Max. apparent Power (VA)		300	JU	1.0	3600				
Power factor				1.0					
Others									
Ingress protection (IP)				IP65					
Protective class		Class I							
Temperature (°C)		-25°C to +60°C (Derating 45°C)							
Inverter Isolation		Non-isolated (PV-AC-BAT)							
Overvoltage category			OVC III (A	C Main), OV	OVC III (AC Main), OVC II (PV)				

G98/1-7 Form C: Type Test Verification Report

Extract form test report number.: 6169274.50

1. Operating Range	:				Р				
Pass or failure of the	carried out as specified	ted in the fields below		example wi	th the				
statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.									
Model: AU-1P3K3G-	·LE				Р				
Test 1:									
Measured Voltage	Measured	Measured Power	Measured Power		Time				
(V)	Frequency (Hz)	(W)	factor	,	onds)				
195.56	47.00	2729.63	0.9995	3	.1 				
Test 2:									
Measured Voltage	Measured	Measured Power	Measured Power		Time				
(V)	Frequency (Hz)	(W)	factor	(Min	utes)				
195.49	47.50	2728.50	0.9995	9	2				
Test 3:									
Measured Voltage	Measured	Measured Power	Measured Power	Test	Time				
(V)	Frequency (Hz)	(W)	factor	(Min	utes)				
253.37	51.50	3006.00	0.9996	9	3				
Test 4:									
Measured Voltage	Measured	Measured Power	Measured Power	Test	Time				
(V)	Frequency (Hz)	(W)	factor	(Min	utes)				
252.99	52.00	3005.50	0.9995	1	6				
Test 5:									
Measured Voltage	Measured	Measured Power	Measured Power	Test	Time				
(V)	Frequency (Hz)	(W)	factor	(Min	utes)				
230.10	50.00	3002.49	0.9989	9	3				
Test 6:									
Measured Voltage (V)	Ramp range	Test frequency ramp	Test Duration	Confirm	n no trip				
195.5	47.0 Hz to 52.0 Hz	+1 Hzs ⁻¹	5.0s	No	trip				
253.0	52.0 Hz to 49.0 Hz	-1 Hzs ⁻¹	3.0s	No	trip				

Document no. : 6169274.01AOC

2. Power Quality - Harmonics:

Р

These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Model: AU-1P1K3G-LE-1

Micro-generator tested to BS EN 61000-3-2

Micro-generator rating per phase (rpp) 1 kW

For 3-phase **Micro-generators**, tick this box if harmonic measurements are identical for all three phases. If the harmonics are not identical for each phase, please replicate this section with the results for each phase.

Single phase PV inverter

•	his section with					
Harmonic	At 45-55% o	f Registered	100% of F	Registered		
	Capa	acity	Сар	acity		
	Measured	Normalised	Measured	Normalised	Limit in BS	Higher limit
	Value MV in	Value	Value MV in	Value (NV) in	EN 61000-3-2	for odd
	Amps	(NV) in Amps	Amps	Amps	in Amps	harmonics 21 and above
2	0.0067	0.025	0.0125	0.046	1.080	
3	0.0209	0.077	0.0662	0.243	2.300	
4	0.0020	0.007	0.0019	0.007	0.430	
5	0.0078	0.029	0.0255	0.094	1.140	
6	0.0018	0.006	0.0018	0.007	0.300	
7	0.0045	0.017	0.0132	0.049	0.770	
8	0.0016	0.006	0.0019	0.007	0.230	
9	0.0041	0.015	0.0091	0.033	0.400	
10	0.0015	0.005	0.0017	0.006	0.184	
11	0.0021	0.008	0.0049	0.018	0.330	
12	0.0015	0.006	0.0017	0.006	0.153	
13	0.0017	0.006	0.0046	0.017	0.210	
14	0.0015	0.005	0.0017	0.006	0.131	
15	0.0016	0.006	0.0027	0.010	0.150	
16	0.0015	0.005	0.0017	0.006	0.115	
17	0.0016	0.006	0.0024	0.009	0.132	
18	0.0014	0.005	0.0016	0.006	0.102	
19	0.0014	0.005	0.0020	0.007	0.118	
20	0.0016	0.006	0.0017	0.006	0.092	
21	0.0014	0.005	0.0020	0.007	0.107	0.160

22	0.0014	0.005	0.0017	0.006	0.084	
23	0.0014	0.005	0.0019	0.007	0.098	0.147
24	0.0014	0.005	0.0015	0.006	0.077	
25	0.0013	0.005	0.0017	0.006	0.090	0.135
26	0.0013	0.005	0.0016	0.006	0.071	
27	0.0014	0.005	0.0017	0.006	0.083	0.124
28	0.0013	0.005	0.0016	0.006	0.066	
29	0.0013	0.005	0.0018	0.006	0.078	0.117
30	0.0012	0.005	0.0015	0.006	0.061	
31	0.0013	0.005	0.0017	0.006	0.073	0.109
32	0.0012	0.005	0.0016	0.006	0.058	
33	0.0012	0.005	0.0016	0.006	0.068	0.102
34	0.0012	0.004	0.0016	0.006	0.054	
35	0.0013	0.005	0.0018	0.007	0.064	0.096
36	0.0011	0.004	0.0015	0.006	0.051	
37	0.0012	0.004	0.0016	0.006	0.061	0.091
38	0.0011	0.004	0.0015	0.006	0.048	
39	0.0012	0.004	0.0016	0.006	0.058	0.087
40	0.0012	0.004	0.0016	0.006	0.046	
	•			•		

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Document no. : 6169274.01AOC

2. Power Quality - Harmonics:

Р

These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Model: AU-1P3K3G-LE

Micro-generator tested to BS EN 61000-3-2

Micro-generator rating per phase (rpp) 3.0 kW

For 3-phase **Micro-generators**, tick this box if harmonic measurements are identical for all three phases. If the harmonics are not identical for each phase, please replicate this section with the results for each phase.

Single phase PV inverter

·	his section with					
Harmonic	At 45-55% o	f Registered	100% of F	Registered		
	Capa	acity	Сар	acity		
	Measured	Normalised	Measured	Normalised	Limit in BS	Higher limit
	Value MV in	Value	Value MV in	Value (NV) in	EN 61000-3-2	for odd
	Amps	(NV) in Amps	Amps	Amps	in Amps	harmonics 21 and above
2	0.0189	0.023	0.0141	0.017	1.080	
3	0.1428	0.175	0.2810	0.345	2.300	
4	0.0043	0.005	0.0171	0.021	0.430	
5	0.0926	0.114	0.1895	0.232	1.140	
6	0.0091	0.011	0.0106	0.013	0.300	
7	0.0629	0.077	0.1325	0.163	0.770	
8	0.0068	0.008	0.0124	0.015	0.230	
9	0.0509	0.062	0.1017	0.125	0.400	
10	0.0068	0.008	0.0020	0.002	0.184	
11	0.0384	0.047	0.0871	0.107	0.330	
12	0.0058	0.007	0.0055	0.007	0.153	
13	0.0348	0.043	0.0683	0.084	0.210	
14	0.0074	0.009	0.0050	0.006	0.131	
15	0.0201	0.025	0.0523	0.064	0.150	
16	0.0066	0.008	0.0037	0.005	0.115	
17	0.0156	0.019	0.0404	0.050	0.132	
18	0.0066	0.008	0.0037	0.005	0.102	
19	0.0109	0.013	0.0308	0.038	0.118	
20	0.0087	0.011	0.0079	0.010	0.092	
21	0.0119	0.015	0.0267	0.033	0.107	0.160

22	0.0072	0.009	0.0067	0.008	0.084	
23	0.0075	0.009	0.0224	0.027	0.098	0.147
24	0.0067	0.008	0.0092	0.011	0.077	
25	0.0060	0.007	0.0184	0.023	0.090	0.135
26	0.0047	0.006	0.0055	0.007	0.071	
27	0.0063	0.008	0.0154	0.019	0.083	0.124
28	0.0073	0.009	0.0113	0.014	0.066	
29	0.0037	0.005	0.0142	0.017	0.078	0.117
30	0.0050	0.006	0.0096	0.012	0.061	
31	0.0049	0.006	0.0132	0.016	0.073	0.109
32	0.0049	0.006	0.0061	0.007	0.058	
33	0.0071	0.009	0.0132	0.016	0.068	0.102
34	0.0058	0.007	0.0068	0.008	0.054	
35	0.0059	0.007	0.0087	0.011	0.064	0.096
36	0.0041	0.005	0.0033	0.004	0.051	
37	0.0065	0.008	0.0090	0.011	0.061	0.091
38	0.0031	0.004	0.0050	0.006	0.048	
39	0.0137	0.017	0.0137	0.017	0.058	0.087
40	0.0027	0.003	0.0039	0.005	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

3. Power Quality - Voltage fluctuations and Flicker:

Р

These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is $0.4~\Omega$ for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and $0.24~\Omega$ for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is $0.98~\mathrm{or~above}$):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

Test start date	2023-01-10	Test end date	2023-01-10				
Test location	No.99, Hongye Road, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China						
Model:	AU-1P3K3G-LE						

		Starting				Stopping			i	Run	ning
	d(max)	d(c)	d(t)		d(max)	d(c)		d(t)	Pst		P _{lt} 2 hours
Measured Values at test impedance	0.56	0.27	0		1.43	0.27		0	0.22		0.19
Normalised to standard impedance	0.56	0.27	0		1.43	0.27		0	0.22		0.19
Normalised to required maximum impedance	N/A	N/A	N/A		N/A	N/A		N/A	N/A		N/A
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%		4%	3.3%	3	.3%	1.0		0.65
Test Impedance	R	0.4		Ω		XI		0.25		Ω	
Standard Impedance	R	0.24 * 0.4 ^		Ω		XI		0.15 * 0.25 ^		Ω	
Maximum Impedance	R	N/A #		Ω		XI		N/A #		Ω	

^{*} Applies to three phase and split single phase **Micro-generators**. Delete as appropriate.

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate.

Document no. : 6169274.01AOC

4. Power quality – DC in	jection:						Р
This test should be carried The % DC injection = Recorde where the base current is than 0.25%.	of rated AC current of DC value in Amps	" below) / base cu	is calculated urrent	d as follows:	ction sh	nould not b	e greater
Model: AU-1P1K3G-LE-1							
Test power level	20%	5	50%	75%		10	0%
Recorded DC injection value in Amps	-0.003 A	0.0	005 A	0.005 A	4	0.0	05 A
as % of rated AC current	-0.07%	0.	.12%	0.11%		0.1	2%
Limit	0.25%	0.	.25%	0.25%		0.25%	
Model: AU-1P3K3G-LE							
Test power level	20% 50% 75% 100%						
Recorded DC injection value in Amps	0.014 A 0.016 A 0.018 A 0.020 A						20 A
as % of rated AC current	0.11%	0.	.12%	0.14%	0.14% 0.15%		
Limit	0.25%	0.	.25%	0.25%		0.25%	
5. Power Factor:							Р
This test shall be carried of Registered Capacity and maintained within ±1.5% of Model: AU-1P1K3G-LE-1	the measured Powe	er Facto	r must be gr				
Voltage	0.94 pu (216.2 V)	1	1.0 pu (230 '	V)	1.1 p	u (253 V)	
Measured value	0.9995		0.9996	,	0.998	,	
Power Factor Limit	>0.95		>0.95		>0.95	5	
Model: AU-1P3K3G-LE-1	1				ı		
Voltage	0.94 pu (216.2 V)	1	1.0 pu (230 '	V)	1.1 p	u (253 V)	
Measured value	0.9993	(09996		0.999	96	
Power Factor Limit	>0.95	>	>0.95		>0.95	5	

6. Protection - Frequency tests:

Ρ

These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Model: AU-1P3K3G-LE

Function	Setting		Trip test		"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip	
U/F stage 1	47.5 Hz	20 s	47.50 Hz	20.1s	47.7 Hz 30 s	No trip	
U/F stage 2	47.0 Hz	0.5 s	46.99 Hz	0.546s	47.2 Hz 19.5 s	No trip	
					46.8 Hz 0.45 s	No trip	
O/F	52.0 Hz	0.5 s	52.00 Hz	0.543s	51.8 Hz 120.0 s	No trip	
					52.2 Hz 0.45 s	No trip	

Note: For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection - Voltage tests:

Р

These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Model: AU-1P3K3G-LE

Function	Setting		Trip test		"No trip tests"	"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip		
U/V	0.8 pu (184 V)	2.5 s	181.1 V	2.512 s	188 V 5.0 s	No trip		
					180 V 2.45 s	No trip		
O/V stage 1	1.14 pu (262.2 V)	1.0 s	265.5 V	1.068 s	258.2 V 5.0 s	No trip		
O/V stage 2	1.19 pu (273.7 V)	0.5 s	275.6 V	0.514 s	269.7 V 0.95 s	No trip		
					277.7 V 0.45 s	No trip		

Note: For Voltage tests the Voltage required to trip is the setting ±3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection - Loss of Mains test:

Р

For PV **Inverter**s shall be tested in accordance with BS EN 62116. Other **Micro-generator**s should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power.

For test condition A, EUT output = $100 \% P_n$, test condition B, EUT output = 50 % to $66 \% P_n$, and test condition C, EUT output = 25 % to $33 \% P_n$.

Model: AU-1P3K3G-LE

For **Inverter**s tested to BS EN 62116 the following sub set of tests should be recorded in the following table

Test Power	33%	66%	100%	33%	66%	100%
and	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
imbalance	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s	0.091s	0.081s	0.079s	0.075s	0.082s	0.073s

8. Protection - Frequency change, Vector Shift Stability test:

Р

This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip under positive / negative vector shift.

Model: AU-1P3K3G-LE

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.0 Hz	+50 degrees	No trip
Negative Vector Shift	50.0 Hz	-50 degrees	No trip

8. Protection – Frequency change, RoCoF Stability test:

Р

The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test.

Model: AU-1P3K3G-LE

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip

9. Limited Frequency Sensitive Mode - Over frequency test:

Р

This test should be carried out in accordance with A.1.2.9. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. The measurement tolerances are contained in A.1.2.9.

Model: AU-1P3K3G-LE

Alternatively, simulation results should be noted below:

Test sequence at Registered Capacity >80%	Measured Active Power Output (W)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	3000.00	50.00	-		-
Step b) 50.45 Hz ±0.05 Hz	2969.01	50.45	9.65		-
Step c) 50.70 Hz ±0.10 Hz	2810.32	50.70	9.48	Photovoltaic	-
Step d) 51.15 Hz ±0.05 Hz	2529.46	51.15	9.56	array	-
Step e) 50.70 Hz ±0.10 Hz	2811.96	50.70	9.56	simulator	-
Step f) 50.45 Hz ±0.05 Hz	2968.37	50.45	9.45		-
Step g) 50.00 Hz ±0.01 Hz	3000.22	50.00	-		-
Test sequence at Registered Capacity 40-60%	Measured Active Power Output (W)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Active Power Gradient
0() 50 00 11 0 04 11					
Step a) 50.00 Hz ±0.01 Hz	1500.00	50.00	-		-
Step a) 50.00 Hz ±0.01 Hz Step b) 50.45 Hz ±0.05 Hz	1500.00 1469.98	50.00 50.45	- 9.95		-
. ,			9.95 9.51	Photovoltaic	-
Step b) 50.45 Hz ±0.05 Hz	1469.98	50.45		Photovoltaic array	
Step b) 50.45 Hz ±0.05 Hz Step c) 50.70 Hz ±0.10 Hz	1469.98 1310.80	50.45 50.70	9.51		- - - -
Step b) 50.45 Hz ±0.05 Hz Step c) 50.70 Hz ±0.10 Hz Step d) 51.15 Hz ±0.05 Hz	1469.98 1310.80 1020.84	50.45 50.70 51.15	9.51 9.39	array	- - - -

The frequency at each step should be maintained for at least one minute and the Active Power reduction in the form of a gradient determined and assessed for compliance with paragraph 11.2.3. The Droop should be determined from the measurements between 50.4 Hz and 51.15 Hz. The allowed tolerance for the frequency measurement shall be \pm 0.05 Hz. The allowed tolerance for Active Power output measurement shall be \pm 10% of the required change in Active Power.

The resulting overall tolerance range for a nominal 10% Droop is +2.8% and -1.5%, ie a Droop less than 12.8% and greater than 8.5%.

Document no. : 6169274.01AOC

10. Power output with falling frequency test (For PV Inverter):						
This test should be carried out in accordance with A.1.2.7.						
Model: AU-1P3K3G-LE	Model: AU-1P3K3G-LE					
Test sequence	Measured Active Power Output (W)	Frequency (Hz)	Primary power soul	rce		
Test a) 50 Hz ± 0.01 Hz	3005.95	50.00	Photovoltaic array	simulator		
Test b) Point between 49.5 Hz and 49.6 Hz	3006.08	49.55	Photovoltaic array	simulator		
Test c) Point between 47.5 Hz and 47.6 Hz	3006.10	47.55	Photovoltaic array	simulator		

NOTE:

The operating point in Test (b) and (c) shall be maintained for at least 5 minutes

The test is regarded as passed if:

- the Micro-generator does not disconnect from the network at the operating points a) to c) when the network frequency is changed and
- the Micro-generator does not reduce output energy at point b) and
- the power reduction at point c) is less than or equal to the allowed power reduction according to paragraph 9.4.2 (Figure 3).

The following data shall be documented:

- variation of the network frequency with time;
- the measured Active Power with time.

11. Power output with falling frequency test (For Electricity Storage Device)							
This test should be o	This test should be carried out in accordance with clause A.1.2.8						
Model: AU-1P3K3G-	·LE						
Test 1: 50 Hz to 49.0	Hz, from 100% P _{rated}	l-import					
Test sequence (Hz)	Measured Active Power Output (W)	Steady frequency (Hz)	Calculated droop (%)	Primary power soul	rce		
50.0	-2980.27	50.00	-	AC grid / Storage B	attery		
49.5	-2975.57	49.50	-	AC grid / Storage B	attery		
49.2	-1248.88	49.20	1.04%	AC grid / Storage B	attery		
49.0	-75.30	49.00	1.03%	AC grid / Storage B	attery		
Test 2: 50 Hz to 48.8	B Hz, from 100% P _{rated}	l-import					
Test sequence (Hz)	Measured Active Power Output (W)	Steady frequency (Hz)	Calculated droop (%)	Primary power soul	rce		
50.0	-2930.37	50.00	-	AC grid / Storage B	attery		
49.5	-2980.06	49.50	-	AC grid / Storage B	attery		
49.2	-1254.71	49.20	1.04%	AC grid / Storage B	attery		
49.0	-66.68	49.00	1.03%	AC grid / Storage B	attery		
48.9	573.38	48.90	1.01%	AC grid / Storage B	attery		
48.8	1190.61	48.80	1.01%	AC grid / Storage B	attery		
Test 3: 50 Hz to 49.0	Hz, from 40% Prated-in	mport					
Test sequence (Hz)	Measured Active Power Output (W)	Steady frequency (Hz)	Calculated droop (%)	Primary power soul	rce		

50.0	-1156.95	50.00	-	AC grid / Storage Battery
49.5	-1204.34	49.50	-	AC grid / Storage Battery
49.2	540.67	49.20	1.03%	AC grid / Storage Battery
49.0	1842.61	49.00	0.98%	AC grid / Storage Battery

Test 4: 50 Hz to 48.8 Hz, from 40% Prated-import

Test sequence (Hz)	Measured Active Power Output (W)	Steady frequency (Hz)	Calculated droop (%)	Primary power source
50.0	-1128.60	50.00	-	AC grid / Storage Battery
49.5	-1197.52	49.50	-	AC grid / Storage Battery
49.2	542.33	49.20	1.03%	AC grid / Storage Battery
49.0	1847.71	49.00	0.99%	AC grid / Storage Battery
48.9	2460.83	48.90	0.98%	AC grid / Storage Battery
48.8	3063.27	48.80	0.99%	AC grid / Storage Battery

NOTE:

This paragraph provides a method for demonstrating compliance with the optional performance characteristic as discussed in the foreword. The tests shall be carried out to demonstrate how the Power Park Module Active Power when acting as a load (ie replenishing its energy store) responds to changes in system frequency.

In general four tests are proposed, one set of two at rated import capacity, and one set of two at 40% of rated import capacity.

In both cases the test is to reduce frequency from 50 Hz at rate of 2 Hz/s. In the first case the lower frequency reached will be 49.0 Hz and the second case the lower frequency will be 48.8 Hz. In all cases the response shall meet the requirements of 11.2.3.3.

12. Re-connection timer

Model: AU-1P3K3G-LE

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Micro-generating Plant** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.				
30 s	32 s	At 1.16 pu (266.2 V)	At 0.78 pu (180.0 V)	At 47.4 Hz	At 52.1 Hz	
	Confirmation that the Microgenerator does not re-connect.		No	No	No	
			Reconnection	Reconnection	Reconnection	
Recover to normal operation range after confirmation of no reconnection		Yes	Yes	Yes	Yes	
Confirmation that the Power Generating Module shall reconnect		Reconnection after 32.0 s	Reconnection after 30.8 s	Reconnection after 31.6 s	Reconnection after 31.6 s	

13. Fault level contribution:

Ρ

Р

These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous). Please complete each entry, even if the fault contribution is zero.

Model: AU-1P3K3G-LE

For machines with electro-magnetic output			For Inverter output				
Parameter	Symbol	Value	Time after fault	Volts	Amps		
Peak Short Circuit current	ip	N/A	20ms	187.7V	9.806A		
Initial Value of aperiodic current	Α	N/A	100ms	0.899 V	8.758A		
Initial symmetrical short-circuit current*	I _k	N/A	250ms	0	0		
Decaying (aperiodic) component of short circuit current*	İ _{DC}	N/A	500ms	0	0		
Reactance/Resistance Ratio of source*	X/ _R	N/A	Time to trip	117 ms	In seconds		

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

Document no. : 6169274.01AOC

14. Logic interface (input port)	
Confirm that an input port is provided and can be used to reduce the Active Power output to zero	Yes
Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or DC signal (the additional comments box below can be used)	Yes
15. Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	N/A
16. Cyber security	
Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7.	Yes Manufacturer's declaration provided.
Additional comments	

Additional comments.

To short or open pin1 and pin5 of logic interface port (Com 1) to control the inverter to normal or shutdown active power of output. A logic interface is provided that can be operated by an external switch or contactor. Users can install by themselves. Users install the switch connected to pin1 and pin5 of Com1 and just need control the switch signal causing the switch to open or short. When the switch is closed, the inverter will operate normally. When the switch is opened, the inverter will cease to export active power within 5 seconds. The signal from the inverter that is being switched is DC (maximum value 3.3V).

End